
CC BY-SA

© 2025 Released under the CC BY-SA license

1

CS 4530: Fundamentals of Software Engineering
Module 6, Lesson 5
Design Patterns

Rob Simmons

Khoury College of Computer Sciences

https://creativecommons.org/licenses/by-sa/4.0/

What is a Pattern?

• A Pattern is a summary of a standard solution (or
solutions) to a specific class of problems.

• A pattern should contain
• A statement of the problem being solved
• A solution of the problem
• Alternative solutions
• A discussion of tradeoffs among the solutions.

• For maximum usefulness, a pattern should have a
name.
• So you can say “here I’m using pattern P” and people

will know what you had in mind.

2

Patterns help communicate intent

• If your code uses a well-known pattern, then the
reader has a head start in understanding your code.

3

Patterns are intended to be flexible

• We will not engage in discussion about whether a
particular piece of code is or is not a “correct”
instance of a particular pattern.

4

Design at the Interaction Level corresponds
to “OOD Design Patterns”

• Four guys in the 90’s wrote a book that lists a lot of
patterns.

• But this is not the be-all and end-all of patterns

• We’ll see patterns at lots of different levels.

5

The Interaction Scale: Examples

• The Data-Pull Pattern

• The Observer or Listener Pattern*

• The Typed-Emitter Pattern

• The Singleton Pattern*

6

*These are “official Design Patterns”
that you will see in Design Patterns
Books

7

Information Transfer: Push vs Pull

class Producer {
 theData : number
}

class Consumer {
 neededData: number
 doSomeWork () {
 doSomething(this.neededData)
 }
}

• How can we get a
piece of data from
the producer to
the consumer?

8

Pattern 1: consumer asks producer
(The “data-pull" pattern)

class Producer {
 theData: number
 getData() { return this.theData }
}

class Consumer {
 constructor(private producer: Producer) { }
 neededData: number
 doSomeWork() {
 this.neededData = this.producer.getData()
 doSomething(this.neededData)
 }
}

• The consumer
knows about the
producer

• The producer has
a method that the
consumer can call

• The consumer
asks the producer
for the data

Example: Interface for a pulling clock

• The interface for a
simple clock

9

export default interface IpullingClock {

 /** sets the time to 0 */
 reset():void

 /** increments the time */
 tick():void

 /** a getter for the current time */
 time: number

}

10

Testing the clock and the client

import { SimpleClock, ClockClient } from "./simpleClockUsingPull";

test("test of SimpleClock", () => {
 const clock1 = new SimpleClock
 expect(clock1.time).toBe(0)
 clock1.tick()
 clock1.tick()
 expect(clock1.time).toBe(2)
 clock1.reset()
 expect(clock1.time).toBe(0)
})

test("test of ClockClient", () => {
 const clock1 = new SimpleClock
 expect(clock1.time).toBe(0)
 const client1 = new ClockClient(clock1)
 expect(clock1.time).toBe(0)
 expect(client1.getTimeFromClock()).toBe(0)
 clock1.tick()
 clock1.tick()
 expect(client1.getTimeFromClock()).toBe(2)
})

11

simpleClockUsingPull.ts

import IClock from "./IPullingClock";

export class SimpleClock implements IClock {
 private time = 0
 public reset () : void {this.time = 0}
 public tick () : void { this.time++ }
 public get time(): number { return this.time }
}

export class ClockClient {
 constructor (private theclock:IClock) {}
 getTimeFromClock ():number {
 return this.theclock.time
 }
}

SimpleClock is the Producer

ClockClient is the Consumer

But there's a potential problem here.

• What if the clock ticks once per second, but there
are dozens of clients, each asking for the time every
10 msec?

• Our clock might be overwhelmed!

• Can we do better for the situation where the clock
updates rarely, but the clients need the values
often?

12

Pattern 1: consumer asks producer
(The “data-pull" pattern)

Examples:

• REST APIs

• Everything internal to the server is effectively a
“data pull” — controller pulls from services,
services pull from repository

13

14

Pattern 2: producer tells consumer ("push")

class Producer {
 constructor(private consumer: Consumer) { }
 theData: number
 updateData(input) {
 this.theData = doSomethingWithInput(input)
 // notify the consumer about the change:
 this.consumer.notify(this.theData)
 }
}

class Consumer {
 neededData: number
 notify(dataValue: number) {
 this.neededData = dataValue
 }
 doSomeWork() {
 doSomething(this.neededData)
 }
}

• Producer notifies
the consumer
whenever the data
is updated

• Producer knows
about the
consumer. Probably
there will be more
than one consumer

15

Pattern 2: producer tells consumer ("push")

class Producer {
 constructor(private consumers: Consumer[]) { }
 theData: number
 updateData(input) {
 this.theData = doSomethingWithInput(input)
 // notify the consumer about the change:
 for (consumer in consumers) {
 this.consumer.notify(this.theData)
 }
 }
}

class Consumer {
 neededData: number
 notify(dataValue: number) {
 this.neededData = dataValue
 }
 doSomeWork() {
 doSomething(this.neededData)
 }

• Producer notifies
the consumer
whenever the data
is updated

• Producer knows
about the
consumer. Probably
there will be more
than one consumer

This is called the Listener or Observer
Pattern

• Also called "publish-subscribe pattern” or just
“pub-sub”

• The object being observed (the “subject”) keeps a
list of the objects who need to be notified when
something changes.
• subject = producer = publisher

• When a new object (i.e., the “consumer”) wants to
be notified when the subject changes, it registers
with ("subscribes to") the
subject/producer/publisher
• observer = consumer = subscriber = listener

16

17

Interface for a clock using the Push pattern

export interface IPushingClock {

 /** resets the time to 0 */
 reset():void

 /**
 * increments the time and sends a .nofify message with the
 * current time to all the consumers
 */
 tick():void

 /** adds another consumer and initializes it with the current time */
 addListener(listener:IPushingClockClient):number
}

18

Interface for a clock listener

interface IPushingClockClient {
 /**
 * * @param t - the current time, as reported by the clock
 */
 notify(t:number):void

}

19

Tests

test("single observer", () => {
 const clock1 = new PushingClock()
 const observer1
 = new PushingClockClient(clock1)
 expect(observer1.time).toBe(0)
 clock1.tick()
 clock1.tick()
 expect(observer1.time).toBe(2)
 })

 test("Multiple Observers", () => {
 const clock1 = new PushingClock()
 const observer1
 = new PushingClockClient(clock1)
 const observer2
 = new PushingClockClient(clock1)
 const observer3
 = new PushingClockClient(clock1)
 clock1.tick()
 clock1.tick()
 expect(observer1.time).toBe(2)
 expect(observer2.time).toBe(2)
 expect(observer3.time).toBe(2)
 })

20

A PushingClock class

export class PushingClock implements IPushingClock {
 private observers: IPushingClockClient[] = []
 public addListener(obs:IPushingClockClient): number {
 this.observers.push(obs);
 return this.time
 }
 private notifyAll() : void {
 this.observers.forEach(obs => obs.notify(this.time))
 }

 private time = 0
 reset() : void { this.time = 0; this.notifyAll() }
 tick() : void { this.time++; this.notifyAll() }

}

21

A Client

export class PushingClockClient implements IPushingClockClient
{
 private time:number
 constructor (theclock:IPushingClock) {
 this.time = theclock.addListener(this)
 }

 notify (t:number) : void {this.time = t}
 getTime () : number {return this.time}

}

22

Interface for a clock listener

We could have called this onTick

interface IPushingClockClient {
 /**
 * * @param t - the current time, as reported by the clock
 */
 notify(t:number):void

}

23

The observer gets to decide what to do with
the notification
export class DifferentClockClient implements IPushingClockClient {

 /** TWICE the current time, as reported by the clock */
 private twiceTime:number

 constructor (theclock:IPushingClock) {
 this.twiceTime = theclock.addListener(this) * 2
 }

 /** list of all the notifications received */
 public readonly notifications : number[] = [] // just for fun

 notify(t: number) : void {
 this.notifications.push(t)
 this.twiceTime = t * 2 }

 time : number { return (this.twiceTime / 2) }
}

24

Better test this, too

test("test of DifferentClockClient", () => {
 const clock1 = new PushingClock()
 const observer1 = new DifferentClockClient(clock1)
 expect(observer1.time).toBe(0)
 clock1.tick()
 expect(observer1.time).toBe(1)
 clock1.tick()
 expect(observer1.time).toBe(2)
 })

Push vs. Pull: Tradeoffs

PULL PUSH
The Consumer knows about the
Producer

Producer knows about the Consumer(s)

The Producer must have a method that
the Consumer can call

The Consumer must have a method that
producer can use to notify it

The Consumer asks the Producer for the
data

Producer notifies the Consumer whenever the
data is updated

Better when updates are more frequent
than requests

Better when updates are rarer than requests

25

Details and Variations

• How does the consumer get an initial value?
• Here we’ve had the producer supply it when the

consumer registers

• Should there be an unsubscribe method?

• What data should be passed with the notify
message?

• How does the producer store its registered
consumers?
• If many consumers, this could be an issue

26

Pattern 2: producer tells consumer ("push")

Examples:

• The whole idea of how WebSockets work!

• The “onClick” methods and other event handlers in
React

• Also basically how we think about Express when
we’re writing a server

27

Pattern #3: The Typed Emitter Pattern

• What if the data source wants to notify its listeners
with several different kinds of messages?

• Maybe with different data payloads?

• And what if we want to take advantage of type-
checking?

28

If the data source needs to push different kinds of
values, then typed emitters may be useful

• Here reset and tick are different kinds of events.

29

import { EventEmitter } from "events"
import TypedEmitter from "typed-emitter"

type ClockEvents = {
 reset: () => void
 tick: (time: number) => void, // carries the current time
}

30

Using an emitter

class SampleEmitterServer {
 private emitter = new EventEmitter as TypedEmitter<ClockEvents>
 public getEmitter():TypedEmitter<ClockEvents> {return this.emitter}
 public demo() {
 this.emitter.emit('tick', 1);
 this.emitter.emit('reset')
 }
}

class SampleEmitterClient {
 constructor (server:SampleEmitterServer) {
 const emitter = server.getEmitter()
 emitter.on('tick', (t:number) => {console.log(t)})
 emitter.on('reset', () => {console.log('reset')})
 }
}

When an event occurs: emit()

When you need to register: on()

31

Interface for a clock using an emitter

export interface IEmittingClock {

 /** resets the time to 0 */
 reset():void

 /**
 * increments the time and sends a .nofify message with the
 * current time to all the consumers
 */
 tick():void

 /** adds another listener; returns the clock's emitter */
 addListener(): TypedEmitter<ClockEvents>
}

32

EmittingClock
export class EmittingClock implements IEmittingClock {

 private time = 0

 private emitter = new EventEmitter as TypedEmitter<ClockEvents>

 reset(): void { this.time = 0; this.emitter.emit('reset') }

 tick(): void { this.time++; this.emitter.emit('tick', this.time) }

 public addListener(): TypedEmitter<ClockEvents> { return this.emitter }

}

33

EmittingClockClient

export class EmittingClockClient {
 private time = 0 // time is not accurate until the next tick
 constructor(theclock: IEmittingClock) {
 const clock: TypedEmitter<ClockEvents> = theclock.addListener()
 // set up event listeners
 clock.on('tick', (t: number) => { this.time = t })
 clock.on('reset', () => { this.time = 0 })
 }

 getTime(): number { return this.time }
}

Pattern #3: The Typed Emitter Pattern

Examples:

• This is fundamentally how the implementation of
socket.io worked!

• TypeScript can really help you out here if you let it

34

export interface ClientToServerEvents {
 chatJoin: (payload: WithAuth<string>) => void;
…

socket.emit('chatJoin', { auth, payload: chatId });

socket.on('chatJoin', chat.socketJoin(socket, io));

Pattern #4: The Singleton Pattern

• Maybe you only want one clock in your system.

• You can't just say "new Clock" because that always
creates a new object of class Clock.

• We'll solve this in two steps.

35

36

Introduce a clock factory

function testClock(clock: IClock, clockName: string) {
 clock.reset()
 clock.tick()
 expect(clock.time).toBe(1)
 clock.tick()
 expect(clock.time).toBe(2)
 clock.reset()
 expect(clock.time).toBe(0)
}

describe('the clock factory should build some working clocks', () => {
 it('works', () => {
 const clock1 = SimpleClockFactory.createClock()
 testClock(clock1, 'clock1')
 const clock2 = SimpleClockFactory.createClock()
 testClock(clock2, 'clock2')
 })
})

But we said we wanted only one clock!

• No problem!

• Just modify the factory so it only creates a clock
once, and after that just returns the same one over
and over again.

37

38

Here’s the behavior we expect
import ClockFactory from './singletonClockFactory'

test("actions on clock1 should be visible on clock2", () => {
 const clock1 = ClockFactory.instance()
 const clock2 = ClockFactory.instance()
 expect(clock1.time).toBe(0)
 expect(clock2.time).toBe(0)
 clock1.tick()
 clock2.tick()
 expect(clock1.time).toBe(2)
 expect(clock2.time).toBe(2)
 clock1.reset()
 expect(clock1.time).toBe(0)
 expect(clock2.time).toBe(0)

})

39

Solution: Use a first-time through switch
and a private constructor
import IClock from './IPullingClock'
import { SimpleClock } from './simpleClockUsingPull';

export default class SingletonClockFactory {
 private static theClock : IClock | undefined
 private constructor () {SingletonClockFactory.theClock = undefined}

 public static instance () : IClock {
 if (SingletonClockFactory.theClock === undefined) {
 SingletonClockFactory.theClock = new SimpleClock
 }
 return SingletonClockFactory.theClock
 }
}

Pattern #4: The Singleton Pattern

Example:

• Mongoose was a great example of the singleton
pattern — you initialize the database once (as
either a specific database or a mongo-memory-
database) and then everywhere else just use
mongoose, which accesses the singleton database

• The “useContext” React hook (which you use
through useAuth and useLoginContext, mostly) is
another example of this.

40

Describing your design using these
vocabulary words

• When I create an object that needs a clock, I ask
the master clock factory to issue me a clock, and
then I have my new object register itself with the
clock.

• The master clock updates my object whenever the
master clock changes.

• The master clock also sends my object an update
message when it registers, so my object will always
have the latest time.

41

42

Discussing your design

I have a lot of objects, and
they each check the time
very often. If they were
constantly sending
messages to the master
clock, that would be a big
load for it. I sat down with
Pat, who is building the
master clock, and we
agreed on this design.

Why did you choose this
design?

43

Discussing your design (2)

Pat told me that the master
clock is a singleton, so they
will all be getting the same
time.

How do you know that all of
your objects will get the right
time?

44

The Discussion (3)

That's something that
happens in the module that
exports the master clock.
Pat is building that module.
Pat says it's not hard, but
they will show me how to do
it in a couple of weeks.

Who is responsible for
keeping the master clock up
to date?

45

The Discussion (4)

The clock factory exports a
class with an interface that
only allows me to register.
The interface doesn’t
provide me with a method
for ticking the clock.

What's to prevent you from
ticking the master clock
yourself?

	Slide 1: CS 4530: Fundamentals of Software Engineering Module 6, Lesson 5 Design Patterns
	Slide 2: What is a Pattern?
	Slide 3: Patterns help communicate intent
	Slide 4: Patterns are intended to be flexible
	Slide 5: Design at the Interaction Level corresponds to “OOD Design Patterns”
	Slide 6: The Interaction Scale: Examples
	Slide 7: Information Transfer: Push vs Pull
	Slide 8: Pattern 1: consumer asks producer (The “data-pull" pattern)
	Slide 9: Example: Interface for a pulling clock
	Slide 10: Testing the clock and the client
	Slide 11: simpleClockUsingPull.ts
	Slide 12: But there's a potential problem here.
	Slide 13: Pattern 1: consumer asks producer (The “data-pull" pattern)
	Slide 14: Pattern 2: producer tells consumer ("push")
	Slide 15: Pattern 2: producer tells consumer ("push")
	Slide 16: This is called the Listener or Observer Pattern
	Slide 17: Interface for a clock using the Push pattern
	Slide 18: Interface for a clock listener
	Slide 19: Tests
	Slide 20: A PushingClock class
	Slide 21: A Client
	Slide 22: Interface for a clock listener
	Slide 23: The observer gets to decide what to do with the notification
	Slide 24: Better test this, too
	Slide 25: Push vs. Pull: Tradeoffs
	Slide 26: Details and Variations
	Slide 27: Pattern 2: producer tells consumer ("push")
	Slide 28: Pattern #3: The Typed Emitter Pattern
	Slide 29: If the data source needs to push different kinds of values, then typed emitters may be useful
	Slide 30: Using an emitter
	Slide 31: Interface for a clock using an emitter
	Slide 32: EmittingClock
	Slide 33: EmittingClockClient
	Slide 34: Pattern #3: The Typed Emitter Pattern
	Slide 35: Pattern #4: The Singleton Pattern
	Slide 36: Introduce a clock factory
	Slide 37: But we said we wanted only one clock!
	Slide 38: Here’s the behavior we expect
	Slide 39: Solution: Use a first-time through switch and a private constructor
	Slide 40: Pattern #4: The Singleton Pattern
	Slide 41: Describing your design using these vocabulary words
	Slide 42: Discussing your design
	Slide 43: Discussing your design (2)
	Slide 44: The Discussion (3)
	Slide 45: The Discussion (4)

